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ABSTRACT: We consider locally consistent systems of magnetized D9 branes on an orb-
ifolded six-torus which support N' = 1 gauge theories. In such realizations, the matter
multiplets arise from “twisted” strings connecting different stacks of branes. The introduc-
tion of Euclidean 5 branes (E5) wrapped on the six-dimensional compact space leads to
instanton effects. For instance, if the system is engineered so as to yield SQCD, a single E5
brane may account for the ADS/TVY superpotential. We discuss the subtle interplay that
exists between the annuli diagrams with an E5 boundary and the holomorphicity proper-
ties of the effective low-energy action of the N/ = 1 theory. The consistency of this picture
allows to obtain information on the Kahler metric of the chiral matter multiplets arising
from twisted strings.
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1. Introduction

While non-perturbative instanton effects have been analyzed in great detail in field theory
and can be evaluated by means of complete and clear algorithms (for reviews, see for
instance refs. [, P]), the study of these effects in string theory is still at an early stage
and, despite some remarkable progresses in the last few years, further work is still needed
to reach a similar degree of accuracy in their computation. This would be very important
not only for including string corrections to the effects that have been already computed
with field theoretical methods, but especially to derive new non-perturbative effects of
purely stringy origin that could play a relevant role in the applications of string theory
to phenomenology. Recently this possibility has been intensively investigated from several
different points of view and has received considerable attention [BJ-[[L{].

However, in order to learn how to deal with non-perturbative effects in string theory
and gain a good control on the results, it is very important also to reproduce, using string
methods, the non-perturbative effects already known from field theory. To this aim, toroidal
orbifolds of Type II string theory (for a review see ref. [[7]) are very useful since they



provide a concrete framework in which one can perform explicit calculations of instanton
effects. For example, they can be used to engineer N’ = 2 super Yang-Mills (SYM) theories
and study the instanton induced prepotential, as discussed in detail in ref. [[§]. In a
recent paper [l we have extended this procedure by compactifying six dimensions on
(’2'2(1) X ’]'2(2)) /Zy x ’]'2(3) and by including the contribution of the mixed annuli diagrams, as
advocated in refs. [fl, [}, BJ]. In particular we have shown that the non-holomorphic terms in
these annulus amplitudes precisely reconstruct the appropriate Kéhler metric factors that
are needed to write the instanton correlators in terms of purely holomorphic variables. In
this way the correct holomorphic structure of the instanton induced low energy effective
action in the Coulomb branch of the N'= 2 SYM theory has been obtained.

In the present paper we apply this procedure to N'=1 SYM theories that we engineer
by means of stacks of magnetized fractional D9 branes in a background given by the product
of RY3 times a six-dimensional orbifold (7;(1) X 7;(2) X 7;(3))/(22 X Z3). A single stack of
fractional D9 branes, that we call “color” branes, supports on its world-volume a pure
N = 1 gauge theory. Matter chiral multiplets can be obtained by introducing a second
stack of magnetized fractional D9 branes, called “flavor” branes, that belong in general to
a different irreducible representation of the orbifold group, and by considering the massless
open strings having one endpoint on the color branes and the other on the flavor branes.
In this framework one can also engineer N' = 1 super QCD by suitably introducing a third
stack of magnetized fractional D9 branes, in such a way that the massless open strings
connecting the color branes and the two types of flavor branes correspond respectively
to the right and left-handed quarks and their super-partners, and hence give rise to a
vector-like theory as described in section B

To study instanton effects in this set-up one has to add a stack of fractional Euclidean
D5 branes (E5 branes for short) that completely wrap the internal manifold and hence
describe point-like configurations from the four-dimensional point of view. If the wrapping
numbers and magnetization of these E5 branes are the same as those of the color D9
branes, one has a stringy realization of ordinary gauge theory instantons.! If instead
their wrapping numbers and magnetization are different from the color branes, one obtains
“exhotic” instanton configurations of purely stringy nature. In this paper we will not
explicitly consider this possibility, even if our methods could be used also in this case. On
the contrary, following the procedure outlined in refs. [P4, [[§], we compute using string
methods the superpotential in N'= 1 SYM theories induced by gauge instantons. In doing
S0, the contribution of mixed annulus diagrams with a boundary attached to the E5 branes,
which are of the same order in the string coupling constant as the disk diagrams which
account for the moduli measure, has to be taken into account.

As noticed in the literature [[l, fl, [, Bd], in supersymmetric situations these mixed
annulus amplitudes are related in a precise way to the 1-loop corrections to the gauge
coupling constant of the color gauge theory and the physical origin of this identification
has been discussed in ref. [I]. This relation can then be used to compare the explicit

Tn fact, these D9/E5 systems are essentially a T-dual version of the D3/D(~1) systems which, in un-
compactified set-ups, are well-known to realize at the string theory level the gauge instantons and their
moduli, described & la ADHM R1]-[4).



expression of the mixed annulus amplitudes to the general formula [2§-P7] that expresses
the 1-loop corrections to the gauge coupling computed in string theory in terms of the
fields and geometrical quantities that appear in the effective supergravity theory, such as
the Kéhler metrics for the various multiplets. Exploiting this fact, we explicitly compute
the mixed annulus diagrams in our orbifold models and extract from them information on
the Kahler metric for the matter multiplets. We then perform two checks on our results.

First, we consider the l-instanton induced superpotential in the set-up corresponding
to N = 1 SQCD. In refs. [{, [Ll0] it has already been shown that the stringy instanton
calculus in this case reproduces the ADS/TVY superpotential 2] (see also ref. [R9]). Here
we discuss in detail the réle of the mixed annuli contributions and show that they are
crucial in making this superpotential holomorphic when expressed in terms of the variables
appropriate to the low-energy supergravity description.

Second, we exploit the fact that the Kéahler metrics of the matter multiplets enter
crucially in the relation between the holomorphic superpotential couplings in the effective
Lagrangian and the physical Yukawa couplings for the canonically normalized fields. We
consider the expression of the latter provided in ref. [B1] for the field-theory limit of mag-
netized brane models, and show that, after transforming it to the supergravity basis, it
becomes purely holomorphic.

The paper is organized as follows. In section | we describe the set-up we utilize for
realizing V' = 1 supersymmetric gauge theories. Section [J is devoted to the description of
the instanton calculus in this set-up. In section § we compute the mixed annulus diagrams
while in section [] we discuss the relation with the Kihler metric for the matter fields;
furthermore we check the holomorphicity of the 1-instanton induced superpotential. In the
last section we show that our expressions yield holomorphic cubic superpotential couplings
of the matter multiplets if we start from the physical Yukawa couplings in magnetized brane
models computed in ref. BI]. Finally, many technical details are given in the appendix.

2. Local N = 1 brane models with chiral matter

A way to realize a N' = 1 SYM theory is to place a stack of fractional D9 branes in a
background given by the product of R'3 times a six-dimensional orbifold

7;(1) x 7*2(2) x 7*2(3)

2.1
ZQ X ZQ ( )

For each torus ’]'2@), the string frame metric and the B-field? are parameterized by the
Kihler and complex structure moduli, 7¢) = T 1(i) +iT. Q(i) and U = Ul(i) + iUQ(i) respec-
tively. For our precise conventions we refer to appendix [A.]. The ten-dimensional string
coordinates XM and ™ are split as

XM (x#, ZY)  and M — (yH, T, (2.2)

where 11 = 0,1,2,3 and the complex coordinates Z¢ and ¥, defined in eq. (@), are
orthonormal in the metric of the i-th torus. Also the (anti-chiral) spin-fields S of the

2Without loss of generality, in the following we will actually set the B-field to zero.



RNS formalism in ten dimensions factorize in a product of four-dimensional and internal
spin-fields, and the precise splitting is given in eq. (A.J). The Zy x Zs orbifold group
in (B.1) contains three non-trivial elements h; (i = 1,2,3). The element h; leaves the i-th
torus ’]'2(i) invariant while acting as a reflection on the remaining two tori.

The above geometry can also be described in the so-called supergravity basis using the
complex moduli s, t® and u(®, whose relation with the previously introduced quantities
in the string basis is [B3, [[7]

Im(s) = s9 = % e %10 Tz(l)TZ(Q)TZ(B) ,
T
Im(t(i)) = tg) _ e—¢10T2(i) 7 (2.3)
u® = ugi) + iug) =y® ,

where ¢ is the ten-dimensional dilaton. The real parts of s and ¢t are related to suitable
RR potentials. In terms of these variables, the N = 1 bulk Kihler potential is given by [BJ]

3 3
K = —log(s2) — Y _log(ty)) — 3 log(uy)) . (2.4)
i=1 i=1
Colored and flavored branes. In this orbifold background we place a stack of N,

fractional D9 branes (hereinafter called colored branes and labeled by an index a) which
for definiteness are taken to transform in the trivial irreducible representation Ry of the
orbifold group. The massless excitations of the open strings attached to these branes fill
the N = 1 vector multiplet in the adjoint representation of U(N,). The disk interactions of
the corresponding vertex operators reproduce, in the field theory limit o/ — 0, the N' =1
SYM action with U(N,) gauge group, which in the Euclidean signature appropriate to
discuss instanton effects, reads

1 1 o
Ssym = 7 /d4x Tr {5 Fi,/ - 2AdlD°‘ﬁAﬁ} , (2.5)
a
where the tree-level Yang-Mills coupling constant g, is given by
1 1
il e TINTATE — 6, . (2.6)
a

Richer models can be found if we introduce additional stacks of fractional D9-branes,
distinguished with a subscript b, that belong to various irreducible representations of the
orbifold group and can be magnetized. In general, we will have IV} branes of type b, which

(%)

we will call flavor branes, and n,’ will be their wrapping number around the i-th torus.
These branes admit a constant magnetic field on the i-th torus
. 4 , , @
F = 0 ax?+2 p gx?ts = b5 azinazt (2.7)
2

The generalized Dirac quantization condition requires that the first Chern class ¢; (Fb(i)) be
an integer, which, in our conventions, implies that
()
el f{) = —b (2.8)
n®
b
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with m,” € Z. In terms of the angular parameters v, defined by

0 ‘ ‘
ora/ b — tan ) with o<y <1, (2.9)
g

it is possible to show that bulk A/ = 1 supersymmetry is preserved if>
1/151) — 1/152) — 1/153) =0. (2.10)

The presence of the magnetic fluxes implies that the open strings stretching between two
different types of branes (e.g. the D9,/D9, strings) are twisted. This means that the
internal string coordinates Z¢ and ¥’ have the following twisted monodromy properties

. . LG . . @)
Zl(e%lz) = ™ Zi(z) and \I!Z(e%”z) =ne?™ Wi(z), (2.11)

where n = 41 for the NS sector and n = —1 for the R sector. If also the color branes
are magnetized, we have to replace in (.10) and (R.11)) I/éi) with VISZ) = I/éi) — Y, which
describe the relative magnetization of the two stacks of branes. When no confusion is
possible, we will denote the twist angles simply by v(®.

As is well-known, in a toroidal orbifold compactification with wrapped branes there
are unphysical closed string tadpoles that must be canceled to have a globally consistent
model. Usually this cancellation is achieved by introducing an orientifold projection and
suitable orientifold planes. Like in other cases treated in the literature, in this paper we
take a “local” point of view and assume that the brane systems we consider can be made
fully consistent with an orientifold projection.

N =1 SQCD with magnetized branes. In the following, we will be mostly interested
in studying instanton effects in A = 1 SQCD with Ng flavors. In our orbifold background
we can realize this model by taking two stacks of flavored fractional D9 branes, denoted
by b and ¢ respectively, both belonging to a different representation of the orbifold group
with respect to the color branes; see figure [I| for a pictorial representation of the system
we consider. For definiteness, we take the R; representation as defined in appendix [A.]].

If the twist angles satisfy the A/ = 1 supersymmetry condition uécll) — I/éi) — yéz) = 0, the
massless states of the D9,/D9, strings fill up a chiral multiplet gy, = ¢, which transforms
in the anti-fundamental representation N, of the color group and appears with a flavor
degeneracy

Np|Lap| » (2.12)
where I, is the number of Landau levels for the (a,b) “intersection”, namely

3
I = H (my)nl(f) — méi)n(i)) =—1Ip, . (2.13)

a
i=1

30ther possibilities are —M 1/,52) + yé3) =0; 71/,51) + 1/152) - 1/53) =0; 1/151) + 1/152) + 1/,53) = 2. They are
all related to the position (m) by obvious changes.
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Figure 1: Schematization of the brane system we consider, and of its spectrum of chiral multiplets;
see the text for more details.

The complex scalar, denoted with an abuse of notation by the same letter ¢ used for the
whole multiplet, arises from the NS sector and is described by the vertex operator (A.17).
Its supersymmetric partner is a chiral fermion y, described by the vertex operator (A.14)
of the R sector, which is connected to the scalar vertex by the N' = 1 supersymmetry
generated by the open string supercharges preserved by the Zs X Zs orbifold.

In an analogous way, we can analyze the open strings stretching between the color
branes and the flavor branes of type c. If the twist angles are such that l/&) — l/ﬁ) —I/C(Li) =0,
then the massless states of the D9,/D9,. strings (notice the orientation!) fill up a chiral
multiplet g, = ¢ that transforms in the fundamental representation N, of the color group

and appears with a flavor degeneracy
Nl (2.14)

where I, is the number of Landau levels for the (a,c) “intersection”. The bosonic and
fermionic components of the multiplet ¢ are described, respectively, by the vertex opera-
tors (A.26)) and (JA.27) which are also related to each other by the N’ = 1 supersymmetry
preserved by the orbifold.

This set-up provides a realization of A" =1 SQCD if we arrange the branes in such a
way that the flavor degeneracies (R.19) and (R.14)) are equal:

Nb’Iab‘ = Ncuac‘ = NF . (215)

In this way we engineer the same number Ng of fundamental and anti-fundamental chiral
multiplets, which will be denoted by ¢y and g/ with f=1,...,Np.

The field-theory limit of the disk amplitudes involving the fields of the chiral multiplets
and those of the vector multiplet yields the N'= 1 SQCD action; for instance, the kinetic
term of the scalars arises in the form

Np
/ d'z Y {Duq” Dtqs + D, D“q}} , (2.16)
f=1



where we have explicitly indicated the sum over the flavor indices and suppressed the color
indices. In the supergravity basis it is customary to use fields with a different normalization.
The kinetic term for the scalars of the chiral multiplet is written as

N
/d4x 3 {KQ D.QY D'Qy + K5 D@’ D“Q}} , (2.17)
F=1

3

where Kg and KQ are the Kéhler metrics. Upon comparison with (R.1€), we see that
relation between the fields ¢ and ¢ appearing in the string vertex operators and the fields
Q and Q of the supergravity basis is

1= \/KqQ . a=,/K;Q. (2.18)

Actually, the rescalings (R.1§) apply not only to the scalar components, but to the entire
chiral multiplets.

3. Instantonic brane effects

In this stringy set-up non-perturbative instantonic effects can be included by adding frac-
tional Euclidean D5 branes (or E5 branes for short) that completely wrap the internal
manifold. We choose these branes to be identical to the color D9, branes in the internal
directions (i.e. they transform in the same representation of the orbifold group; they have,
if any, the same magnetization etc.), while they are point-like in the space-time directions.
Thus we call them E5,, and they provide the stringy representation of ordinary instantons
for the gauge theory on the D9, branes. Notice, however, that with respect to the gauge
theory living on a different stack of D9 branes (like the branes D9, or D9,.), the E5, rep-
resent “exotic” instantons, whose properties are different from those of the ordinary gauge
theory instantons. Recently, these “exotic” configurations have been investigated [f-([Lg]
from various points of view.

Our aim is to use the relation between the non-holomorphic corrections appearing in the
string computation of instantonic effects and the Kéhler metrics of the chiral multiplets in
the supergravity basis to gain information on the latter. To elucidate the physical meaning
of these corrections, we will examine in particular the one-instanton induced ADS/TVY
superpotential [R§ (see also ref. [29]), present in the case Ny = N, — 1, whose stringy
derivation has been recently reconsidered in [[d, [(]. To proceed, let us first review how the
instanton contributions to the superpotential arise in our specific set-up.

3.1 The instanton moduli

In presence of the E5, branes we have new types of open strings: the E5,/E5, strings
(neutral sector), the D9,/E5, or E5,/D9, strings (charged sector) and the D9,/E5, or
E5,/D9, strings (flavored sectors). The states of such strings do not carry any space-
time momentum and represent moduli rather than dynamical fields in space-time. The
spectrum of moduli is summarized in table [, and the corresponding vertex operators are
listed in appendix [A.9. Let us notice that the states of these strings can carry (discretized)



Sector ADHM Meaning Chan-Paton Dimension
5a/54 NS a, centers adj. U(k) (length)
D, Lagrange mult. : (length)~2
R M partners : (length)?
Aé Lagrange mult. : (length)_%
9,/5« NS | wg sizes N, x k (length)
5a/9% We, : kx N, :
9%/5. R i partners N, x k (length)%
54/% i : kx N, :
%/5. R w flavored Np x k (length)%
5a /9. i : kxNp :

Table 1: The spectrum of moduli from the open strings with at least one boundary attached to
the instantonic E5, branes. See the text for more details and comments, and appendix @ for the
expressions of the corresponding emission vertices.

momentum along the compact directions, when they are untwisted, i.e. when they belong to
the neutral or charged sectors; such Kaluza-Klein copies of the moduli represent a genuine
string feature.

Let us also recall that, in order to yield non-trivial interactions when o/ — 0 4], the
emission vertices of some of the moduli, given in appendix [A.3, have to be rescaled with
factors of the dimensionful coupling constant on the E5,, namely g5, = g./(4m%a’), with
Jgo given in (@) As a consequence, some of the moduli acquire unconventional scaling
dimensions which, however, are the right ones for their interpretation as parameters of an
instanton solution [fl, B4].

The neutral moduli which survive the orbifold projection are the four physical bosonic
excitations a, from the NS sector, related to the positions of the (multi-)centers of the
instanton, and three auxiliary excitations D, (¢ = 1,2,3). In the R sector, we find two
chiral fermionic zero-modes M, and two anti-chiral ones A\g. The M are the fermionic
partners of the instanton centers. All of these moduli are k& x k& matrices and transform in
the adjoint representation of U(k). If we write the k x k matrices a and M® as

a“:xg]lkxk—i—yé‘Tc R Mazea]lkxk—i-Cch, (3.1)

where T° are the generators of SU(k), then the instanton center of mass, xf, and its
fermionic partners, 8¢, can be identified respectively with the bosonic and fermionic coor-
dinates of the N' = 1 superspace.

The charged instantonic sector contains, in the NS sector, two physical bosonic moduli
wg with dimension of (length), related to the size and orientation in color space of the
instanton, and a fermionic modulus p. These moduli carry a fundamental U(k) index and

a color one.



Figure 2: The flavored moduli of instantonic E5, branes in presence of D9, and D9, branes; see
the text for more details.

In our realization of N' = 1 SQCD there are two flavored instantonic sectors corre-
sponding to the open strings that stretch between the E5, branes and the flavor branes
of type b or ¢, depicted in figure . In both cases the four non-compact directions have
mixed Neumann-Dirichlet boundary conditions while all the internal complex coordinates
are twisted. As a consequence, there are no bosonic physical zero-modes in the NS sector
and the only physical excitations are fermionic ones from the R sector. A detailed analy-
sis of the twisted conformal field theory shows that there are fermionic moduli M} in the
D9, /E5, strings and fermionic moduli i’/ in the E5,/D9, strings. They are described re-
spectively by the vertex operators (|A.34) and (|A.3§). On the other hand no physical states
survive the GSO projection in the E5,/D9, and D9./E5, sectors. The fermionic moduli
,u} and /i’ are the counterparts of the chiral multiplets gy and G/ respectively, when the

color D9, branes are replaced by the instantonic E5, branes.

The physical moduli we have listed above, collectively denoted by My, are in one-
to-one correspondence with the ADHM moduli of N/ = 1 gauge instantons (for a more
detailed discussion see, for instance, [[l] and references therein). In all instantonic sectors
we can construct many other open string states that carry a discretized momentum along
the compact directions and/or have some bosonic or fermionic string oscillators. These
“massive” states are not physical, i.e. they cannot be described by vertex operators of

conformal dimension one; they can, however, circulate in open string loop diagrams.

3.2 The instanton induced superpotential

In the sector with instanton number k, the effective action for the gauge/matter fields is
obtained by the “functional” integral over the instanton moduli of the exponential of all
diagrams with at least part of their boundary on the E5, branes, possibly with insertions of
moduli and gauge/matter fields [B4, Bg, B3, 4, [, [[9]. In the semi-classical approximation,

only disk diagrams and annuli (the latter with no insertions) are retained. Focusing on the



dependence from the scalar fields of the chiral multiplets in the Higgs branch, we have

_ 87\'2

Sk = Ck e ﬁk eAga /de e_Smod(%q;Mk) . (32)

Let us now analyze the various terms in this expression.

C is a normalization factor which compensates for the dimensions of the integration
measure d My, and may contain numerical constants and powers of the coupling g,. Its
dimensionality is determined by counting the dimensions (measured in units of o/) of the
various moduli My, as given in the previous subsections, and the result is, up to overall

numerical constants,

O = (Var) "N (g, mamak (3.3)

Notice the appearance of the one-loop coefficient b; = (3N, — N) of the S-function of the
N =1 SQCD with N flavors. The factor of (g,)~2V+* in (B.3) has been inserted following
the discussion of ref. [f], but in principle it should also have a stringy interpretation,
probably as a left-over of the cancellation between the bosonic and fermionic fluctuation
determinants when the N’ = 1 gauge action is normalized as in (R.).

As explained in refs. [B4, P4, the disk diagrams with no insertions account for the
exponential of (minus) the classical instanton action 872k/g2, where g, is interpreted as
the Yang-Mills coupling constant at the string scale. This explains the second factor
in (B.9). The third factor contains Aj. which accounts for the open string annuli diagrams
with at least one boundary on the E5, branes and no insertions [f], [, [, [[9]. Since the
functional integration over the ADHM moduli My, is explicitly performed in (B.9), to avoid
double counting only the contribution of the “massive” string excitations has to be taken
into account in these annuli: this is the reason of the ’ notation which reminds that only
the “massive” instantonic string excitations must circulate in the loop.

Finally, in the integrand of (B.9) we find the moduli action Speq(q, G; My). This can be
computed following the procedure explained in ref. [24] from all disk scattering amplitudes
involving the ADHM moduli and the scalar fields ¢ and ¢ in the limit o/ — 0 (with g,
fixed). The result is

Smod(Qv q~§ Mk‘) = trk{iDc <wo'z (Tc)dﬁwﬁ + iﬁfw [aH’ au])

—i\G (ﬂwa + wap + [GH,MQ]UQL@)} (3.4)

Np . .
+ ey {walaVar + @@t - 3 aq s+ 57 dh )

f=1
The first two lines above have the only effect of implementing the (super) ADHM con-
straints, for which D, and A% act as Lagrange multipliers. The last line arises from the
disk diagrams which contain insertions of the chiral scalars and survive in the field theory
limit, depicted in figure f.

There are other non-zero disk diagrams with moduli and matter fields that survive in

the field theory limit. However, these other diagrams can be related to the ones in figure
by means of supersymmetry Ward identities [, R4]. This implies that the complete

,10,
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Figure 3: Disk interactions between the moduli and the chiral scalars which survive in the field
theory limit

result is obtained simply by replacing in (B4) the scalars ¢ and ¢ and their conjugate
with the corresponding chiral and anti-chiral superfields. From now on, we will assume
this replacement. Notice that the multiplets ¢ and ¢ appear in (B.4) differently from their
conjugates ¢' and ¢'; this fact has important consequences on the holomorphicity properties
of the instanton-induced correlators, as we will see later.

In the moduli action (B.4), the superspace coordinates xf and 6<, defined in (B.1),
appear only through superfields ¢(xg, ), G(xo,0), . ... It is therefore convenient to separate
these coordinates from the remaining centered moduli, denoted by .//\/\(k, and rewrite the
effective action (B.9) in terms of a k-instanton induced superpotential W}, namely

S = / d*zo d20 Wi(q,q) (3.5)
where ,
_8n” , o~ . T
Wilq,q) = Cre o " o /de e~ SmoalaEM) (3.6)

Even if Spo4(q, G; M &) has an explicit dependence on ¢" and ', this dependence disappears
upon integrating over M & as a consequence of the cohomology properties of the integration
measure on the instanton moduli space [B6, [, [§]. Thus, W (¢, §) depends holomorphically
on the chiral superfields ¢ and ¢. However, the annulus amplitude A5 that appears in the
prefactor of eq. (B.§) could introduce a non-holomorphic dependence on the complex and
Kahler structure moduli of the compactification space. On the other hand, the multiplets
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q and § have to be rescaled according to eq. (R.1§) to express the result in the supergravity
variables, and the holomorphic Wilsonian renormalization group invariant scale A, has to
be introduced.

We will consider the interplay of all these observations in section [, after explicitly
evaluating the instantonic annulus amplitude A'5a in section f|. Before this, however, we
briefly comment on the non-perturbative superpotential for £ = 1.

3.3 The ADS/TVY superpotential

The measure dM % in eq. (B.4) contains many fermionic zero modes. Among them, the A\®
are Lagrange multipliers for the fermionic ADHM constraints but, after enforcing these
constraints, the u’s, ii’s, u”’s and ji’’s must be exactly compensated otherwise the entire
integral vanishes. The single instanton case, k = 1, is already very interesting. First of all,
in this case it is easy to see that the balancing of the fermionic zero-modes requires that
Np = N, — 1. After having integrated over the fermions, we are left with a (constrained)
Gaussian integration over the bosonic moduli wg and wg, which can be explicitly performed
e.g. by going to a region of the moduli space where the chiral fields are diagonal, up
to rows/columns of zeroes. Furthermore, the D-terms in the gauge sector constrain the
superfields to obey ¢ff qf = g’ cj}, so that the bosonic integration brings the square of a
simple determinant in the denominator, which cancels the anti-holomorphic contributions
produced by the fermionic integrals. In the end, one finds [fl] (see also refs. [, [Ld])

2
Wict(q,@) = Cp e 8 " otba — (3.7)
det (qq)

which has the same form of the ADS/TVY superpotential 2§, P]. As we will explicitly
see in the following, the prefactor e®a is crucial to establish the correct holomorphic
properties of this superpotential when everything is expressed in terms of the supergravity
variables (B.3), the chiral superfields are normalized with their Kahler metrics and the
Wilsonian scale A, is introduced.

4. The mixed annuli

To describe explicitly the instanton induced effects on the low energy effective action,
the only ingredient yet to be specified is the annulus amplitude As,, whose “primed”
part appears in the equations from eq. (B.9) on. This amplitude represents the 1-loop
vacuum energy of open strings with at least one end point on the wrapped instantonic
branes E5,. Because of supersymmetry, the annulus amplitude associated to the E5,/E5,
strings identically vanishes, so As, receives contributions only from mixed annuli with
one boundary on the Eb5,’s and the other on the D9 branes. In particular, the 1-loop
contribution of the charged instantonic open strings is denoted as

As,.9, = A(9a/5a) + A(ba/9a), (4.1)

where on the r.h.s. we distinguish the contributions of the D9, /E5, and E5,/D9,,. Similarly,
for the flavored instantonic open strings

As,.09, = A(9b/5a) + A(5a/9b) and As,.9. = A(9c/5a) + A(5a/9c) (4.2)
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for the two different stacks of flavor branes used to engineer N' =1 SQCD.

It has been noticed in the literature [, [f] that the computation of mixed annuli is
related to the stringy computation of the 1-loop threshold corrections to the coupling of
the color gauge group living on the D9,. In ref. [Ig] we showed that this relation is explained
by the fact that, in a supersymmetric theory, the mixed annuli compute just the running
coupling by expanding around the classical instanton background, namely

w2k
As, = -
ga(p)

a

(4.3)

at 1—loop

Applying this argument to our system and keeping distinct the charged and flavored sectors,
we expect therefore to find

3N,
As, 9, = —87°k 0; log(a/1?) 4+ Acorer | (4.4a)
16m
— 2 Np ’ 2
A5a§9b + A5a§9c = =81’k <_ 167T2 log(a H ) + Aﬂavor) . (44b)

In these expressions, p is the scale that regularizes the IR divergences of the annuli am-
plitudes* due to the massless states circulating in the loop, and the coefficients of the
logarithms arise by counting (with appropriate sign and weight) the bosonic and fermionic
ground states of mixed open strings with one end point on the E5,s branes, i.e. the charged
and flavored instanton moduli that we listed in section fJ. This counting agrees, as it should,
with the 1-loop S-function coefficients that are appropriate, respectively, for the gauge and
the flavor multiplets. Let us now describe the explicit form of the various annuli amplitudes.

Charged sector. For a given open string orientation, we have

A(9a/54) = /000 ;Z—: [Tr NS (P((;?g,a(é%) Porp,. qL°> —Trgr (P((;?g,a(éS“) Porp,. qL(’)} ; (4.5)

where ¢ = exp(—277), P((}gsfc’f“) is the appropriate GSO projector, and

3
1
Porb. = Z <1 + Zl hz) (46)

is the orbifold projector, with h; being the three non-trivial elements of the Zg x Zs orbifold
action of our background. Each element h; is in fact the generator of a Zs subgroup
which leaves invariant the i-th torus (see appendix [A.1)). The corresponding term in the
amplitude is therefore identical in form to the one encountered in the computation of the
9a/5a amplitude in a N' = 2 background ’T;ﬂ X ’T;k) (with 7,k # 4). This computation is
described, for instance, in section 4 of ref. [[9] to which we refer for notations and details.

4These open string annulus amplitudes exhibit both UV and IR divergences. The UV divergences,
corresponding to IR divergences in the dual closed string channel, cancel in consistent tadpole-free models;
even if in this paper we take only a local point of view, we assume that globally the closed string tadpoles
are absent so that we can ignore the UV divergences.
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It turns out that the GSO projection in the R sector has to be defined differently for the
two string orientations (see appendix [A.9) so that the amplitude A(9a/5a) vanishes, and
one remains with

3 oo
As, 0, = A(5a/9a) = Noky /0 ;l—: Yo (4.7)
i=1

In the end all string excitations cancel and only the zero-modes contribute: they correspond
to the charged instanton moduli listed in table [[, and their Kaluza-Klein partners on the
torus ’]'2(1) fixed by the element h; of the orbifold group; these states reconstruct the sum

i 2
Ir U —ry |

Y= 3 g (4.8)

(r1,r2)€Z?

The integration over the modular parameter can be done [B7, [[9] with the assumption
that the UV divergence for 7 — 0, which corresponds to an IR divergences in the closed
string channel, cancel in a globally consistent, i.e. tadpole-free, model (of which here we are
considering just the “local” aspects on some given stacks of branes far from the orientifold
planes). The IR divergence for 7 — oo requires the introduction of cut-offs m; which are
conveniently taken to be complex, as advocated in [Bg, Bd, [[9]. The resulting amplitude is
then

3
Ny k i i
As,0, = — 5 Z <10g (o m() + log (U( )T \n(U( )\ )) (4.9)
i=1
Choosing [[L9] '
me)y = pefe = Me2iarg(n(U(z))), (4.10)

the final result is

3N,
2 a ’,2
As,.0, 8tk [16 5 og(a'u”) +

3 . . .
oS tos (U1 9)?)
=1

which is of the expected form ([.4d).

Flavored sectors. The amplitude As,.9, receives contributions from the two possible
orientations of the open strings, as described in eq. (@) These contributions, and therefore
also the total amplitude Asj,.g,, are defined in perfect analogy with eq. (.§), in particular
they contain the orbifold projector P, given in ([.§). Taking into account that the D5,
branes transform according to the trivial representation of the orbifold group, while the
D9, and D9, transform according to the representation R; defined in table [A.f, we can
make explicit the orbifold action on the Chan-Paton factors. We can then write the total
amplitude as the sum of four sectors corresponding to the insertions of the various group
elements as follows:®

A0, = ZR1 (hp) Al = { 6o+ Al — Abzg — Al L (4.12)

5In this notation the identity element e corresponds to hg.
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The annulus amplitudes Agi .9, take into account the action of the orbifold elements h;
on the string fields Z% and ¥?, in the various sectors, as described in appendix [A.1l Such
amplitudes are computed in detail in appendix [A.J; here we simply write the final results.
In the untwisted sector we find

. ikNp [¥dr
AE’“;Q”_ 2 /0 2T

while in the three twisted sectors we have

e _ik:NF/OOd_T
5a;% o 0 27

3
> " Ry(h;) 0; log 01 (z]iT)| Ziw(i)] , (4.13)
i=1

3 (4.14)
X [32 log Hl(Z‘iT) ‘Z:i’rl/(i) + Rl(hz) Z R, (hj) 0, log HQ(Z‘iT) ‘Ziﬂ/(j)]
Jj#i=1

It is worth pointing out that the contribution of the odd spin-structure, which is divergent
due to the superghost zero-modes, actually cancels out when in each sector we sum over
the two open string orientations, leading to finite and well-defined expressions.

Inserting the amplitudes ([#.13) and (Im) in (ﬁ.lﬂ), we find

. 3
ik Np [ dr ) .
As,0, = py /0 o { ;1 Ry (hq) 9. log [01(ziT) O2(zi7)] ‘z:iq—u(i)} : (4.15)

Then, if we use the identity

o0 _ 2n
1 (=im) 0 (2]ir) = 01 (22]2i7) [ G +32n> , (4.16)

n=1

where ¢ = exp(—277), it is easy to see that the total flavored amplitude (.15) becomes

ik Np [*dr
Ano =5 [ 5

3
> Ry(h;)0; log al(zyw)|ziwm] . (4.17)

i=1

Notice that this is identical to the contribution ({.13) of the untwisted sector. This means
that the flavored amplitude of the orbifold theory is the same as the one without the
orbifold, so that the A/ = 1 structure realized with the magnetic fluxes is fully preserved
by the orbifold projection. The mixed amplitude (f.17) agrees with the quadratic term in
the gauge field f of the annulus amplitude Ag,.05(f) computed in ref. [B7 to evaluate the
gauge threshold corrections in intersecting brane models (see also refs. [, [d, ).

We now need to evaluate the integral over 7 that appears in eq. (fLI7). It is not
difficult to realize that this integral is divergent both in the ultraviolet (7 — 0) and in the
infrared (7 — o0). The ultraviolet divergence can be eliminated by considering tadpole
free models as mentioned above, while the infrared divergence can be cured by introducing,
for example, a regulator R(7) = (1 - e_l/(o‘lmQT)) with the cut-off m — 0. The original
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evaluation [B7] of the 7 integral appearing in ({.17) has been recently revisited in ref. [(].

Using this revised result in our case,’ we obtain
Np N,
2 2 F
As, .9, = 87k (32 log(a/m?®) + 39,2 log I‘ba> , (4.18)

where (1) (2) (3)
p _T0-w)) Tw,) T@,) (4.19)
ba = (1) 2) (3) .
Ty TA-y)ra-vy

Considering also the contribution of the flavor branes of type ¢ that are characterized by

twist angles VU(L?, and writing m = pe¥, for our realization of N/ = 1 SQCD the total

flavored annulus amplitude is

[log( ) + 2icp] +

1672

Np
As,0, + As,0, = 877k ( 327

N,
F2 log (Fba Fac)) ) (420)

which is indeed of the expected form ({.4H).

5. Relation to the matter Kahler metric

In this section we elaborate on the previous results. In particular we will rewrite the
annulus amplitudes ([L11]) and (f.2() in terms of the variables (R.3) of the supergravity
basis in order to obtain information on the K&hler metrics for the fundamental NV = 1

chiral multiplets, and then check that the instanton induced superpotential W acquires
the correct holomorphy properties required by N/ = 1 supersymmetry.

5.1 Holomorphic coupling redefinition

As remarked already in refs. [R6, 7], the UV cutoff that has to be used in the field theory
analysis of a string model is the four-dimensional Planck mass Mp, which is related to o/
as follows: 1

M3 = o e P10, (5.1)

where ¢y is the ten-dimensional dilaton. In terms of this cut-off, eqs. (f.11)) and ({.2()

become, respectively,

3N, T
As 9, = =87k < 5 log —5 + Acolor> (5.2)
1672 ° M2
with
X Na ¢ @) (p (DY
B = 1% | 3log(e 0 s2) ng( T (U@ ) : (5.3)
7T
and )
Np 15 x
As,i9, + Asi9. = — 81k <— 0g o T Aﬁavor> (54)
b 16m2 ° M3

6See in particular eq. (3.16) of ref. [@] with all numerical additive constants absorbed in a redefinition
of the cut-off m.

,16,



with

Aﬂavor =

F _ . 1
162 <log(e 210 59) + 2ip + 5 log (Tpa I‘ac)> . (5.5)

Since in Ag,.., there are no analytic terms, we can consistently set ¢ = 0 in the following.

We now rewrite the above expressions in terms of the geometrical variables of the
supergravity basis. For the charged amplitude As_ .9, the procedure is very similar to the
one we have applied in the N' = 2 case [I]. In fact, using the tree-level relation between
the string and the supergravity moduli given in (R.J) and the bulk Kéhler potential (P.4),
eq. (F-2) can be recast in the following form:

12
As,0, =k [ 3]2\7 - N, Zlog( ) Na K+ N, loggi] . (5.6)

Turning to the flavored amplitude (F.4), we easily see that it can be rewritten as follows:

N 2 Np Np
A5a§9b + A5a;90 = k |: 2F 1 % - TK + 5 log(ZQZ ):| (57)

where the quantities Zg and Z@, defined through the equation
1
log(e™ 10 59) + glog (TpaTlea) = —K —i—log(ZQZQv), (5.8)

are explicitly given by

Zo = (4rsy) 1 (PN T (WPu@u) 72 (Ty,) 2 (5.9)
. ~1 (4(1,2),6)\~1 (, 1), (@) ()3 :
25 = (4ms2) % (ty 'ty ty) ¥ (uy 'uy us’) 2 (Tac)? (5.10)

Egs. (b.6) and (5.7) can be combined in the general formula at 1-loop

b
_Z 1 E
A=k 5 log 2 + fY+ = K T(G,) log < > n, T(r) log Z, (5.11)

where f() is a holomorphic function and
T(r)éap = Tr.(TaTs) , T(Ga) = T(adj),

b=3T(G Z n, T c=T(Ga) = > n.T(r) (5.12)

with T4 being the generators of the gauge group G, and n, the number of N' = 1 chiral
multiplets transforming in the representation r. Indeed, eq. (B.6) is obtained from eq. (5.11)
when we consider the A/ =1 vector multiplet (i.e. b = 3N, and ¢ = N,), and take

D=_N, ilog <n(u(i))2> . (5.13)

,17,



On the contrary eq. (B.7) is obtained from eq. (5.11]) by considering the fundamental matter
fields of N' = 1 SQCD with N flavors (i.e. b= ¢ = —Np), taking f() = 0 and identifying
Z, with Zg and Z5 of egs. (f-9) and (F.10).

In view of the relation ([.3), we see that by adding the disk contribution to the above
annulus amplitude one obtains the running coupling constant of the effective theory in the
1-loop approximation, namely

87’k
Al—loop = - 7T2 + A (514)

with A given by (B.11)), i.e. by the sum of egs. (5.6) and (5.7). On the other hand, according
to refs. [2§-P7, B{] this has to be expressed in terms of the Wilsonian gauge coupling gq,
the (tree-level) bulk Kéhler potential K and the (tree-level) Kéahler metrics K, of the chiral

multiplets in the representation r of the gauge group G, as follows

812k b 2
7E—2+k‘ —= 10g'u—2
g 2 MP

a

1y cC 1
Al—loop = - + f( ) + 5 K - T(Ga) log <?> + an T(T‘) log K,

a

with f) being a holomorphic function, and b and ¢ defined as in F.12).

Notice that the gauge coupling constant g, obtained from the disk amplitude may not
coincide with the Wilsonian coupling g, appearing in (p.15): in general there may be loop
effects, related to sigma-model anomalies in the low energy supergravity theory [, so

that
1 1 19

g_g = 9_2 5.2 (5.16)
Since g, is the Wilsonian coupling, it has to be (the imaginary part of) a chiral field: at
tree-level this is indeed what happens (see eq. (2.6)), but such a relation may be spoiled by
loop corrections leading to § # 0. Furthermore, g, runs only at 1-loop and its G-function
is given by ,

e (30) = 1o

Comparing eq. (p.1]) with the string expression (p.14) for Aj_joep, We see:

(5.17)

e that in the right hand side of eq. (b.11]) the log(1/g2) term can be replaced by
log(1/§2) since the difference yields a higher order correction;

e that f( is given by (F.13) and

e that if § contains a term 6(°) of order §?, the tree-level Kéhler metrics of the chiral
fields are given by
K, =Z.X, (5.18)

where the non-holomorphic factors A, are such that

50 4+ Z n,T(r)log X, =0 . (5.19)
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Note that if § is of higher order in gq, i.e. if 8 = 0, then X, = 1 and the tree-level Kihler
metric of the chiral multiplets reduces to Z,. (see eqs. (5.9) and (p.10)), that is to what can
be directly read from the string annulus amplitude (f.11]).

In the following subsection we will check the consistency of this result by showing that
the instanton induced superpotential has the correct holomorphy properties required by
N = 1 supersymmetry when everything is expressed in the appropriate variables of the
low energy effective action. Moreover in section | we will compare our findings against the
holomorphy properties of the Yukawa superpotential computed in ref. [B1] for systems of
magnetized D9 branes in the field theory limit.

5.2 Field redefinitions and the instanton induced superpotential

The threshold corrections Ecolor and Aﬂavor, and especially their non-holomorphic parts, play
an important role since they are related to the “primed” part of the annulus amplitude
that appears in the prefactor of the instantonic correlators; in fact

Air)a = _87T2k <£Color + 5ﬂavor) . (520)

In ref. [R] it has been suggested that some of the terms of A5 are related to the rescalings of
the fields appearing in the instanton induced correlator that are necessary in order to have
a pure holomorphic expression. In ref. [I9] we have showed in detail that for A" = 2 models,
where the instantons determine corrections to the gauge prepotential, this is indeed what
happens. Here we show that the same is true also for the instanton-induced superpotential
for N' =1 theories, thus clarifying the general procedure.

We concentrate in the one-instanton case (k = 1), where one finds, for Np = N, — 1,
the instanton-induced ADS/TVY-like superpotential of eq. (B.7). For k£ = 1, the “primed”

amplitude (F.2() explicitly reads

Na_NF

Np
5 K + T log(ZQZé) . (5.21)

3
Af, =—N, Y log <n(u(”)2> + N, log g2 +
=1

Using this expression in eq. (B.7) and introducing the Kahler metrics Ko = ZoXg and

Ky = Z5Xg, with Zg and Z5 given in (b-9) and (b.10), and Xy and Xg such that

6O 4 % log(XoX5) =0, (5.22)
we obtain
Wiy = /2 ﬁ <n(u(i))—2Na) ((\/J)—(QNQH) e_%) (KQKk)Na{I ;N . (5.23)
p 97 det(qq)

where we have used eq. (p.16) and the fact that Np = N, — 1. If we now introduce the
chiral multiplets Q and Q in the supergravity basis through the rescalings (R.1§), and the
holomorphic renormalization group invariant scale through the 3-function (p.17), namely

Ay, = (Vo) Pe o (5.24)
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we find

3
. 1 ~ 1
Wiy = of</2 w)~2Na') A2Na+1 ' K/2 R 2Nat1 S 595
k=1 };Il (77( ) ) hol det(Q Q) hol det(QQ) ( )

In the last step we have absorbed the moduli dependent factors of 7(u(")) with a holomor-
phic redefinition of the Wilsonian scale A, into Khol.

The final form of eq. (p.2]) is the correct one for a holomorphic ADS/TVY superpo-
tential term in a non-trivial background. The factor of ¢’/2 is the contribution of the bulk
Kahler potential, while the remaining part

We = A2t 1 5.26

k=1 hol det ( 0 Q) ( )

is a holomorphic expression in the appropriate variables of the Wilsonian scheme. Thus,

the various pieces of the “primed” instantonic annulus amplitude A5 have conspired to

Ee\produce the required factors to obtain a fully holomorphic ADS/TVY superpotential
Wi—1.

6. Comparison with the Yukawa couplings

It is well known that the Kéhler metrics of the chiral multiplets play a key role in relat-
ing the holomorphic superpotential couplings in the effective supergravity Lagrangian to
the physical Yukawa couplings of the canonically normalized matter fields. This relation
represents therefore a possible test on the structure of the Kahler metrics K¢ and K, o

Let us recall some basic points, and set up appropriate notations. When various
stacks of branes, of types a, b, ¢, ..., are present, there are chiral multiplets arising from the
massless open strings stretching between them. We will denote as ¢*® the chiral multiplet
(as well as the scalar therein) coming from the D9,/D9,, strings, which we formerly indicated
as ¢, and as ¢ the chiral multiplet corresponding to D9, /D9, strings, which was previously
indicated as §. We will then similarly have the multiplets ¢°®, .... The corresponding
multiplets in the “supergravity” basis will be denoted as Q%, Q, Q®, ..., and their
Kéhler metrics will be Kj, (formerly Kg), Kqe (formerly KQ) and so on. These metrics
will contain the appropriate factors I'yy, T'4e, Tep, ..., which in turn are given by the
analogue of eq. (J.19) in terms of the twist angles uéi), u§i>, yg)), el

In this situation, there are non-trivial interactions supported on disks whose boundary
is partly attached to three different branes, say of types a, ¢ and b, provided the twist
angles I/ISZ), l/c(fc), I/él? for each ¢ are either the internal or the external angles of a triangle.
These interactions in the field-theory limit correspond to Yukawa couplings between the

fields of the chiral multiplets ¢®¢, ¢®® and ¢®?, like for instance the one associated to figure [

/d4x Yoo Tr (X“ch’xb“) , (6.1)

plus its supersymmetric completion terms. Altogether such interactions can be encoded in
the cubic superpotential
Wy = Yoo Tt (¢%°¢¢") . (6.2)
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Figure 4: A disk diagram leading to a Yukawa coupling.

If we rewrite the above superpotential in terms of the multiplets in the supergravity basis

Q

via the rescalings (2.18), we obtain

N

Wy = Yacb (Kac Kbc Kba) Tr (QGCQCbea) . (63)
On the other hand, in the effective supergravity action this superpotential must take the
form

Wy = /2 W, Tr (QQ7Q™), (6.4)

K/2 ig the standard contribution of the bulk Kéhler potential and Wacb are purely

where e
holomorphic functions of the geometric moduli. Comparing these last two equations, we
deduce that

Yoo = /2 (Koo Koy Kpa) ™2 Woagp - (6.5)

If we now use the bulk Kéhler potential (P-4) and the Kéhler metric Kpq = ZpqXpq, with
Zpe given in (B.9) and similarly for K,. and K, we easily obtain

Yoo = (4m)% 55 % (1996219) 75 (PP uP)F (Tl esTh0) 7 (XaeXep o)~ W 66)
= 47 e(%4 (ugl)ug)ugg))i (]--‘ac:[‘cb]r‘bat)ii (XacchXba)ié Wacb7

where ¢4 = ¢19 — 3>, log(TQ(i)) is the four-dimensional dilaton.

We now compare this finding with the results of ref. BI] for the physical Yukawa
couplings of toroidal models with magnetized D9 branes.” The expression for Yy, is given
in their eq. (7.13). Setting to zero the value of the Wilson lines, and rewriting it in terms
of the supergravity moduli through eqs (5.47)—(5.49) of the same reference, in our notation

it reads L
3 (1) g(i) |4
b4 1 95779
Yacb = e 24 (ugl)qu)ugg)) 4 H m Wécb . (67)
i=11V1 2

"In the T-dual intersecting brane version, these couplings have been studied in refs. [@7@, @]
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The detailed expression of the quantities ﬁgi), ﬂg) and W/, is not relevant here; the only
important points that we want to emphasize are that W/, is a holomorphic function of
the complex structure moduli © and that the expression (@) has been obtained starting
from the non-abelian Yang-Mills theory on the D9 branes, rather than from the full fledged
DBI action. Therefore one expects that it only represents the field theory limit of the string
result.® However, as already argued in ref. [B1], one can extend eq. (b.7) by observing that
in the field theory limit o/ — 0 (i.e. in the small twist limit) one has

RN RFCFONE

(Facr brba * 1:[ 79(2 79(2 (68)
With this understanding, eq. (.7) can then be generalized as
1 1

Voor = €2 (uSul?ulP) 1 (Doel oy T) 4 Wy (6.9)

which agrees with eq. (p.6) by taking W/, = Vir Wacb, provided the non-holomorphic
factors obey
KXaeXepXpe =1 . (6.10)

Indeed, stripping off the various factors of the Kéhler potential and of the Kéhler metrics
from the physical Yukawa couplings Y, according to eq. (f.6), we can obtain the expected
holomorphic structure of the superpotential only if (b.1() is satisfied.

The simplest solution to this constraint is clearly Ay, = Xy = Xy = 1. This would
imply that the K&hler metrics for the twisted chiral matter fields are given by the ex-
pressions (5.9) and (f.I0). Notice that in this case the only dependence on the twist

parameters would be through the I'-functions contained in the factors (I‘ba)% and (I‘ac)%
(see eq. (:19)). Such factors are the same as the ones that can be obtained directly from
a 3-point string scattering amplitude involving one (closed string) geometric modulus and
two twisted scalar fields, as explained in refs. [B3, if]. On the other hand, the possibil-
ity of non-trivial X factors has been considered in refs. [0, 7). Besides satisfying the
constraint (f.10), such non-holomorphic factors should also be related to a non-vanishing
sigma-model anomaly term 0, as explained in section B It would be very interesting
to do an independent calculation to check this point.

We close with a few concluding remarks. Loop corrections to the bulk Kéahler potential
or to the Einstein term in the bulk action, which for Type II theories have been computed
in refs. B3, g, in general induce shifts of the supergravity variables and in particular are
responsible for a non-vanishing é-term in eq. (p.16). However, such a d-term appears to be
of order g; ~ §2 and thus it does not affect the form of the Kihler metric for the N = 1
twisted matter at tree-level. Furthermore, using the known expressions for the Kahler
potential and Kéhler metrics, in ref. [IJ] we have explicitly checked that in ' = 2 SQCD
no shift 6 is produced. It would be very interesting to explore further this issue and see
whether and how an anomalous term 6() in A/ = 1 theories with magnetized branes is
possible.

8See ref. [@] for a string theory calculation of the Yukawa couplings and a direct derivation of the T’
factors.
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A. Technicalities

In this appendix we provide some technical details. In particular in appendix [A.1] we
describe the background geometry and the Zy X Zg orbifold action. In appendix [A.9 we
write the vertex operators for the physical states in the various open string sectors and
their GSO properties, and finally in appendix we present the calculation of the mixed
annulus amplitudes for the flavored sectors.

A.1 The background geometry

The metric and the B-field on the torus ’]'2@) are expressed in terms of the complex moduli
T® and of the Kahler moduli 7 as follows:

0 i | )
go=L_(1 U and B0 = ( O 700 (A1)
Uz(z) Uy u@)? T, 0

With respect to the above metric, the orthonormal complex coordinates and the corre-
sponding string fields on the torus ’Tz(l) are given by:

73"
20"

(1)
15 ‘ ( X2i+2 4 @ X2i+3) NG

A )
20U,

(¢2¢+2 I U(i)¢2i+3> (A.2)

for i =1,2,3.
The (anti-chiral) spin-fields S** of the RNS formalism in ten dimensions factorize in a
product of four-dimensional and internal spin-fields, according to

S4 (SaS_ S80S 14,8081 1,8,8 1,848+ g¥gt— gag—t— gag——+)
(A.3)
where the index « (&) denotes positive (negative) chirality in R and the labels (&, +, +)
on the internal spin-fields denote charges (£3,£3, £1) under the three internal U(1)’s.
The orbifold group Zs x Zs contains three non-trivial elements h; (subject to the
relation hihy = h3) acting on the internal coordinates as follows

hl : (Zl,ZQ’Zg) - (Zla_ZQ,_Zg)a
hy: (ZY, 2% 23%) — (-2, 2%, -273), (A.4)
hs: (2',2%,2%) — (-2',-2%,2°%),
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and similarly for the U123 fields. We may summarize the transformation properties ([A.4)
for the conformal fields 0Z% and W (i = 1,2,3) in the Neveu-Schwarz sector by means of
the following table:

conf. field ‘ irrep

o7t Wi ‘ R,

(A.5)

where {R;} = {Rp, R;} are the irreducible representations of Zs x Zs, identified by writing
the character table of the group

e hl hg h3
Rol1 1 1 1
Ri|1 1 -1 —-1. (A.6)
Ry |1 -1 1 -1
Ry |1 -1 -1 1

The Clebsh-Gordan series for these representations is simply given by
Ry® Ry =Ry R, ® R]’ = (5¢jR0 + |Ez‘jk|Rk . (A7)

The action of the orbifold group on spin fields and spinor states is given by a spinor
representation of the geometrical rotations of 7 in the various tori defined in eq. (A:4). In
particular, we choose it to be given by

hy = 1®o03® 03,
ho =—03®1 ® o3, (AS)
h3=—0’3®0‘3®][,

which corresponds to the following table:

anti-chiral | chiral | hy | ho | hg | irrep
S_44 St 1 1 1| Ry
S___ Sttv | 1 | -1 |-1| Ry . (A.9)
Sy STt —-1] 1|-1| Ry
S_4 St=*t1-1|-1| 1 | Rs

In particular, the only invariant spin fields are S_,, and ST .

A.2 The string vertices

We describe now in some more detail the string realization of the massless N’ = 1 multiplets
corresponding to the system of magnetized branes we consider in the paper. This system
is pictorially represented in figures [l and |, where however only the flavored multiplets and
moduli respectively are indicated.
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D9,/D9, strings. These strings are untwisted. The NS massless vertices in the (—1)
superghost picture:

Va(z) = (ma/)2 A, ph(z) e #@) lunX"() (A.10)

and those of the R sector, which we write in the (—1/2) picture:
Va(z) = (2100/) T A* S (2)S_ 4 (2) e 290 oiPnX"(2) (A.11)

contain the d.o.f. of the N'= 1 gauge multiplet. In these vertices, the polarizations have
canonical dimensions (this explains the dimensional prefactors?) and are N, x N, matrices
transforming in the adjoint representation of SU(N,); here we neglect the U(1) factor
associated to the center of mass of the N, D9 branes. With respect to the orbifold group,
the D9, /D9, strings carry Chan-Paton factors in the representation Ry x Ry = Ry. Also
the operator part of the vertices (A.10) and (A.11]) must therefore be invariant under the
orbifold. This is clearly the case for V4, and the gaugino vertex (JA.11]) contains the spin
field S_,  which, according to (A.9) is indeed invariant.

D9,/D9, and D9,/D9, strings. Next we consider the strings stretching between two
different stacks of branes. For definiteness we focus on those connected on one end to
the color D9, branes, and the other end to the flavor D9, branes. These strings have
Chan-Paton factors which, with respect to the orbifold group, belong to the representation

Ri®Ry=Rq. (A.12)

To write the vertex operators it is convenient to introduce the following notation

3 3
o(z) = Hayéi)(z) , s(z) = H S”zgi) (2), (A.13)
i=1 i=1

where o ;) and S ;) are respectively the bosonic and fermionic twist fields in the i-th torus
Yba Vpq,
whose conformal dimensions are
) _ Lo (i) @ _ Lo @y
Al = 3Vba (1-v,)) and hg = §(Vba) . (A.14)
Then, the physical massless state in the NS sector of the D9,/D9, is a complex scalar
described by the following vertex operator:

Vy(2) = (2770/)% qo(2) :U(2)s(z): e ) PuX"(z) (A.15)

which can be easily checked!® to have conformal dimension 1 for p? = 0 when the twists
satisfy the supersymmetry condition l/éi) = l/éi) "’VIS)' The operator s(z) is invariant under
the orbifold, so that : U!(z)s(z) : belongs to the representation R; and compensates the

non-trivial transformation of the Chan-Paton factors (see eq. (A.12)).

9See for example ref. [Q] for details on the normalizations of vertex operators and scattering amplitudes.

ORemember that the conformal dimension of e~?() and e~2#(*) is respectively equal to % and %.
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In the R sector the massless states are described by the following vertex operator:

Vo (2) = (21a/) T X So(2) 0(2)5(2) e 29(3) ePnX"(2) | (A.16)
where
3
%(z) = 115(1,152);)(2) : (A.17)

Again, one can easily check that this vertex operator has conformal dimension 1 for p? = 0
when the twists satisfy the supersymmetry condition. With respect to the orbifold group,
the operator 3(z) transforms in the representation Ry, just as the spin field S___ to which
it reduces in the limit of vanishing twists (see eq. (A.g)). The chirality of the spinor x is
fixed by the GSO projection, with
F
9/9a 1+ (=)

Podo = — (A.18)
and the fact that the vertex (JA.16) survives the projection means that on the corresponding
state we have

(—)F1840%) = +|SqoX) . (A.19)
The vertices ((A.15) and (A.16) belong to the N, representation of the color group, and
have a flavor degeneracy described in the main text (see eqs. (B.19) and (R.13)).
If we consider the D9, /D9j strings we find the conjugate scalar ¢':

Vii(z) = (2710/)% ¢ 7(2) U (2)5(2): e P PuX () (A.20)
and the conjugate fermion y':
Voi(2) = (2ma) 7 x4 5%(2) 3(2)5(2) e~ 293 oPnX () (A.21)

where the anti-twist fields are defined as follows:

3 3 3
7(z) = Haliyéi) (2), s(2)=]] Siyéi)(z) , () =]] Sy o - (A.22)
i=1 i=1 i=1
These vertices transform in the fundamental representation N, of the color group and are
degenerate in flavor as the ¢ and x vertices.

Let us notice that the operator appearing in eq. ({A.21)) is not the CFT conjugate of
the one appearing in eq. ([A.16)), which would be given!! by Sg&i. This latter has the same
F-parity as in eq. (JA.19), so that the state corresponding to the vertex (JA.21]) must have
the opposite one:

(—)F)845%) = —|S4%) . (A.23)
The anti-chiral vertex ([A.21)) is selected because in the R sector of the D9, /D9, strings we
take . p
P = 72 S (A.24)
as opposed to eq. (JA.1§). This has important consequences for the annulus partition
function of the flavored strings; see the discussion of this point after eq. (4.34) of ref. [[[],
in an V' = 2 context.

"1n fact, the nontrivial overlap between the 4d spin fields is (Sg|Sa)  €ap-
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D9,/D9. and D9./D9, strings. The open strings stretching between the color D9,
branes and the flavor branes of type D9, have essentially the same characteristics of the
D9,/D9, and D9, /D9, ones, provided one replaces the twist angles IJEEZ) with

Vi) = ) — i) (A.25)

ac a Cc

In the NS sector of the D9, /D9, strings we find a complex scalar ¢ associated to the
massless vertex

Vi(2) = (2770/)% G5(2) U (2)5(2): e ¥ PuX"(2) (A.26)

while in the R sector we have a chiral spinor:

w00

Vi(z) = (210/)T X Sa(2) 5(2)5(2) e 29() ePuX"(2) (A.27)

Here the twist/spin fields &, § and ¥ are defined analogously to eqs (A.13) and (A.17)
in terms of the angles l/c(fc) of eq. (A:25). These vertices transform in the fundamental
representation IV, of the color group and are degenerate in flavor as indicated in eq. (R.14)) in
the main text. Notice that for the (a,c) “intersection” the réle of the color and flavor branes
is switched, with respect to the (b,a) intersection, for what concerns the GSO/chirality
projection.

E5,/E5, strings. The polarizations in all vertices arising from these strings are k x k
matrices transforming in the adjoint of U(k), and belong to the trivial representation of the
orbifold group. The operator part of the vertices must therefore also be invariant under

the orbifold.

In the NS sector we have the vertices

Va(2) = g5, (271'0/)% a, YH(z) e ¥ (A.28a)
Vi(2) = De (maf)2 5, 0" (204 (2). (A.28D)

where 75, are the three anti-self-dual 't Hooft symbols. In the R sector, we have

Vir(z) = L2 (2ma/) T M So(2)S_ s (2) e 39 (A.29)

&

Vi(2) = g (270/)1 S%(2)ST(2) e 2¢() | (A.30)

D9,/E5, and E5,/D9, strings. In the NS sector of D9,/E5, strings we have the
vertices

Vip(2) = f;’% (21a!)2 wa A(2)S%(2) e ?) (A.31)

Here A is the twist operator with conformal weight 1/4 which changes the boundary
conditions of the non-compact coordinates X* from Neumann to Dirichlet.
In the R sector there is the vertex

Vu(z) = J5a (2710/)% wA(2)S_y4(2) e 390 | (A.32)

>
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Both in (A.31) and ([A.33) the polarizations are N, x k matrices which transform in the
bi-fundamental representation N, x k of U(N,) x U(k). The Chan-Paton factors and the
operator part of these vertices are invariant under the orbifold group.

The charged moduli associated to the E5, /D9, strings, denoted by wg and fi, transform
in the N, x k representation and are described by vertex operators of the same form
as (A.31)) and (A.33) with A(z) replaced by the anti-twist A(z), corresponding to DN
(instead of ND) boundary conditions along the space-time directions. In particular, we

have

Vil(z) = L2 (2m0/) T i A(2)S_ sy (2) e 29C) (A.33)

Notice that this vertex is not the CFT conjugate of eq. ([A.33), which would contain the
operator AST™.

D9, /E5, and E5,/D9, strings. The Chan-Paton factors for these strings transform,
analogously to eq. (A.12), in the representation Ry of the orbifold group.

Since there is no momentum available for these strings, it is not possible to construct
physical vertices in the NS sector. The only physical vertex for D9,/E5, strings is in the
R sector:

_ Y5a ne —5¢(2)
Vi (z) = 5 2ra’ )1y A(z)o(z) X(z) e 2 . (A.34)

Notice that the operator part of this vertex transforms in the R; representation (see the

discussion after eq. (A.17) above), and this appropriately compensates the transformation
of the Chan-Paton factors. The polarization transforms in the anti-fundamental of U(k)
and carries a flavor degeneracy as in eq. (R.19). The vertex (|A.34) survives the GSO
projection
F
ob/5a 1+ (=)
Paso =——5— (A.35)

hence, on the corresponding state, we have
(—)F|AoE) = +|AoY) . (A.36)

If we consider now the mixed strings with the opposite orientation, the E5,/D9;, ones,
we can only construct a massless vertex using the operator A%. This operator is the CFT
conjugate of the operator appearing in eq. ([A.34), and has therefore the same F-parity.
However, in the R sector, as usual we have to take the opposite projection with respect to
eq. (A.35), namely

F
sa/9b 1 — (=)

Figo = ——5— - (A.37)

Therefore, no physical state with this orientation survives the projection.

E5,/D9. and D9./E5, strings. In this sector, we find a physical vertex in the R sector
of the E5,/D9. given by

Vi (2) = J5a (2710/)% i A(2)6(2) 2(2) e 390 (A.38)

>
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The polarization transforms in the fundamental of U(k) and carries a flavor degeneracy as

in eq. (2.14).

In the mixed strings D9./E5, with the opposite orientation, no physical state survives
the GSO projection.
A.3 The flavored annuli

In this section we compute in more detail the contribution of E5,/D9;, and D9, /E5, strings
to the annulus amplitude, deriving the expressions given in eqs ([.13) and (f.14) for the

one-loop traces Agi;% containing the insertions of the various elements of the orbifold
group.

The untwisted sector corresponds to the insertion the identity element hg = e. For
the even spin structures, one finds that contributions corresponding to the two possible
orientations are equal. Adding them, one finds

1 .
ik Np [®dr 0[5](0fiT)

- -1 a+G+af B
Ao = "o /0 5 2 (1) 07 (0fi7)

076:0

o, B)£(1,1) (A.39)

(
(211G 1im) 61 0fim) \ * £ 015) Vi)
<9[ ] (0it) 61 %| )) H 01 (ivDrfiT)

i=1

where Ny is given in eq. (R.15) and we have used the following notations!?

Op) =03 ; 0 =04 ; O)=062 ; 0] =01 . (A.40)

0. 1

Moreover, we have denoted with primes the derivatives of the #-functions with respect to
their first argument, i.e.

01 (v|it) = 0.01(z]iT)| (A.41)

zZ=Vv
The contribution of the odd spin structure R(—1)%" for a given orientation is actually
infinite and cannot be regularized using the procedure described in ref. [i9]. However,
because of the different GSO projection to be employed in the two oriented sectors (see
appendix [A.3), one gets a complete cancellation between the two orientations.
Eq. (A.39), which coincides with eq. (2.11) of ref. [f], can be recast in a simpler form
by first using the following relation

05 lir) 01000\ ”[3)(0fim) oo il
<9[g](0|17) el(gm)) = G = esGlinly (A.42)
and then the Riemann identity
1 3
> (CNTIT o lir) [ [ og3) G i)
a,8=0 i=1 (A.43)

=— 291(§|i7') 01(— % + iTV(1)|i’7') 91(2 + irp? |17') 91( + it |i7') .

2For the #-functions we use the notations listed in appendix A of ref. [@] where also the Riemann
identity, that will be used several times in the following, is given.
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The last term of eq. ([A.43) does not contribute when this is inserted into eq. (A.39) since
the right hand side of eq. (A.43) is zero for v = 0. Therefore we get

. 1 e 3
. ik Np [>dr atpias 9" [51(0iT) o5 (D rlir)
g9, = —— — -1 . A.44
5ai% 2 /0 27 Z (=1) 0|17' H 01 ( 11/(Z T|iT) ( )
a,3=0 i=1
(a,8)#(1,1)

Taking the second derivative with respect to z of the Riemann identity (A.43) and eval-
uating it at z = 0, we obtain another identity which allows us to rewrite eq. (A.44) as
follows:

ik Np [*°dr
e _ Ad
5a79b 27‘[’ A 27. ( 5)

X [82 log 91(z|i7'){z:iw(l) — 0, log 91(z|i7'){z:iw(2) — 0, log 91(Z|i7—)‘z:iﬂ/(3)} .

This is precisely eq. (f.13) of the main text.
Let us now turn to the three amplitudes Agi;% containing the insertion on the non-
trivial elements h; of the orbifold group. Again the (divergent) contribution of the odd spin

structure R(—1)% cancels when we sum over the two orientations of the flavored strings,
while the even spin structures give the following contribution
. 1
h; ik NF dr 1 6+a’ﬁ
Ly, = —— [R1(h; A.46
A5a,95 7 /0 o 9/ (0fiT) ﬁz_ [R1(hi)]* ( )
(A1)

6’[;‘](i7'ui\i7') ﬁ 9[5+1](1TV( |iT)
61 (itv i) idimt 0o (it [iT)

(6”121 0lir) = () 0lir) 02 1og 01 (2fi7) s, )

where in the second line we have already used the relation (JA.42). To proceed we have
to distinguish the two cases corresponding to hi, for which R;(h;) = 1, and to hg, hs, for
which Rj(hy) = Ry(h3) = —1. In the first case eq. (A.46) becomes

ikN !
h1 _ F 1 a+B+af
A0, 2w /0 27 9' 0|17' Z (=1)

a,=0
(e, 8)#(1,1) A
A7
< (0"51(0lir) = 0[3](0fir) 02 log 01 (2fiT)] s, ) (A-47)
9[‘5](17'%1 |iT) [ﬁﬂ](m'y |i7') 9[531](i71/(3)|i7')
0, (irvWlir)  Oo(irv@fir)  O2(irvBlir)
where we have used the fact that
0,2, (zliT) = (=1)*0,5.] (2liT) - (A.48)
We can then exploit the identity
1
> (=) EreB e (2lir) ]3] (irv D ir) 0,2 ) (irvPir) 6], ] (irv P fi7)
a,B=0 (A49)
=20, (E‘iT) 0:1(— Z4 iTV(l)]iT) (92(E + iTV(Q)\iT) (92(E + iTV(?’)]iT)
2 2 2 2
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to check that the term containing the second derivative of the logarithm of 6 in eq. (A.47)
does not give any contribution. The remaining terms can be computed by differentiating
twice with respect to z both sides of eq. (]A.49) and putting z = 0. In this way we get

o ikNp /Ood_T N
Asso, = 2t Jo 27 (A.50)
X [az log 91(z|i7')|zziw(1) — 0, log 92(z|i7')|zziw(2) — 0, log 92(z|i7')‘zziw(3)} .

Let us now consider the amplitude with hy inserted. In this case eq. (A.4() becomes

ik:NF
_1)etB+as
AS‘“Q” o /0 27'(9 0]17’ Z (=1)

7/8:
(e,B)#(1,1) s
x (9”[5‘;](0!17) — 0,2,)(0li7) 92 1og 1 (=1i7)]._; ) (A
9[6+1](”V |i7') 9[;](i7'1/(3)|i7') H[g (iTV(1)|iT)

]
O1(iTv2lit)  Oa(itvBir) (it [iT)
after making the substitution § + 1 — [ and using eq. (A.48). Then, by exploiting the
following relation:

1
D (=1l g 1(zlir) 0], (irv P fir) 0[3) (irv P [ir) 0[3) (irvW]ir) (A.52)
a,3=0

= 291(—|17') 91( +irul |i7') 92(% + iTV(3)|iT) 92( — g + iTV(1)|i7') )

we can show that the second term in the second line in eq. (JA.51)) is zero. The first term
can instead be computed by differentiating twice both sides of eq. (A.52), and we get

Abz :lkNF/ dr (A.53)
0

% 21 2T

X {82 log 6 (z[i7)|

5 — 0. log 62(2’]17)|

z=iTu( z=iTu(

Finally the amplitude with the insertion of hj3 is obtained from the previous expression

by the exchange (i = 2) < (i = 3), namely

hs :ikNF/Ood_T A.54
‘Aa§9b ot 0 2T ( . )

X [az log 61(2’17—)|z: v 0. log 02(2”1T)|Z:i7_y(2) -0, log 02(2‘17—) ‘z:i’ru(l)} :

i
Egs. (A.50), (A.53) and (A.54) can be written in the compact form reported in eq. ({.14)
of the main text.
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